The power selection of fiber laser cutting machines depends on the type and thickness of materials.
The thinner the material, the faster the cutting speed.
When a laser cutting machine with the same power cuts different materials, the maximum cutting speed and thickness are different.
This article will list laser cutting machines' power, speed, and thickness parameters.
You can refer to the table to select the appropriate laser cutting machine power.
Of course, cutting speed is not only affected by power and material thickness.
The quality of the optical lens, fiber laser, plate, and gas will affect the cutting speed.
The higher the power, the more expensive the laser cutting machine.
But most of the processing only needs a medium power laser cutting machine.
Therefore, the market share of laser cutting machines from 1000W to 2000W is relatively high.
Fiber Laser Cutting Thickness and Speed Parameters (IPG/Carbon Steel/1000W-4000W)
1000W | 1500W | 2000W | 3000W | 4000W | ||
Thickness | Speed | Speed | Speed | Speed | Speed | |
Material | (mm) | (m/min) | (m/min) | (m/min) | (m/min) | (m/min) |
1 | 9-12 | 9-12 | 9-11/18-22 | 9-12/25-30 | 9-11/40-50 | |
2 | 4.5-5 | 4.9-5.5 | 5-6 | 5-6/12-15 | 5-6/18-22 | |
3 | 3-3.3 | 3.4-3.8 | 3.7-4.2 | 4-4.5 | 4-4.5/15-18 | |
4 | 2.1-2.4 | 2.4-2.8 | 2.8-3.5 | 3.2-3.8 | 3.2-3.8/8-10 | |
Carbon Steel | 5 | 1.6-1.8 | 2.0-2.4 | 2.5-2.8 | 3.2-3.4 | 3-3.5/4-5 |
(O2/N2/Air) | 6 | 1.3-1.5 | 1.6-1.9 | 2.0-2.5 | 3-3.2 | 2.8-3.2 |
8 | 0.9-1.1 | 1.1-1.3 | 1.2-1.5 | 2-2.3 | 2.3-2.6 | |
10 | 0.7-0.9 | 0.9-1.0 | 1-1.2 | 1.5-1.7 | 2-2.2 | |
12 | 0.7-0.8 | 0.9-1.1 | 0.8-1 | 1-1.5 | ||
14 | 0.6-0.7 | 0.7-0.9 | 0.8-0.9 | 0.85-1.1 | ||
16 | 0.6-0.75 | 0.7-0.85 | 0.8-1 | |||
20 | 0.65-0.8 | 0.6-0.9 | ||||
22 | 0.6-0.7 |
Fiber Laser Cutting Thickness and Speed Parameters (IPG/Carbon Steel/6000W-12000W)
6000W | 8000W | 10000W | 12000W | ||
Thickness | Speed | Speed | Speed | Speed | |
Material | (mm) | (m/min) | (m/min) | (m/min) | (m/min) |
1 | 10-12/ 45-60 | 10-12/ 50-60 | 10-12/ 50-80 | ||
2 | 5-6/ 26-30 | 5.5-6.8/ 30-35 | 5.5-6.8/ 38-43 | ||
3 | 4-4.5/ 18-20 | 4.2-5.0/ 20-25 | 4.2-5.0/ 28-30 | ||
4 | 3.2-3.8/ 13-15 | 3.7-4.5/ 15-18 | 3.7-4.5/ 18-21 | ||
5 | 3-3.5/ 7-10 | 3.2-3.8/ 10-12 | 3.2-3.8/ 13-15 | ||
6 | 2.8-3.2 | 2.8-3.6/ 8.2-9.2 | 2.8-3.6/ 10.8-12 | ||
8 | 2.5-2.8 | 2.6-3.0/ 5.0-5.8 | 2.6-3.0/ 7.0-7.8 | ||
Carbon Steel | 10 | 2.0-2.5 | 2.1-2.6/ 3.0-3.5 | 2.1-2.6/ 3.8-4.6 | 2.2-2.6 |
(O2/N2/Air) | 12 | 1.8-2.2 | 1.9-2.3 | 1.9-2.3 | 2-2.2 |
14 | 1-1.8 | 1.1-1.8 | 1.1-1.8 | 1.8-2.2 | |
16 | 0.85-1.5 | 0.85-1.2 | 0.85-1.2 | 1.5-2 | |
20 | 0.75-1.0 | 0.75-1.1 | 0.75-1.1 | 1.2-1.7 | |
22 | 0.7-0.8 | 0.7-0.85 | 0.7-0.85 | 0.7-0.85 | |
25 | 0.6-0.7 | 0.6-0.8 | 0.6-0.8 | 0.6-0.8 | |
30 | 0.4-0.5 | ||||
35 | 0.35-0.45 | ||||
40 | 0.3-0.4 |
From the chart above, we will compare the parameters of the laser cutting machine when cutting the same kind of material.
1000W laser cutting machine cuts 3M thick carbon steel with a maximum cutting speed of 3.3m/min.
1000W laser cutting machine cuts 3M thick carbon steel with a maximum cutting speed of 3.3m/min.
2000W laser cutting machine cuts 3M thick carbon steel with a maximum cutting speed of 4.2m/min.
Fiber Laser Cutting Thickness and Speed Parameters (IPG/Stainless Steel/1000W-4000W)
1000W | 1500W | 2000W | 3000W | 4000W | ||
Thickness | Speed | Speed | Speed | Speed | Speed | |
Material | (mm) | (m/min) | (m/min) | (m/min) | (m/min) | (m/min) |
1 | 12-15 | 16-20 | 20-28 | 30-40 | 40-55 | |
2 | 4.5-5.5 | 5.5-7.0 | 7-11 | 15-18 | 20-25 | |
3 | 1.5-2 | 2.0-2.8 | 4.5-6.5 | 8-10 | 12-15 | |
4 | 1-1.3 | 1.5-1.9 | 2.8-3.2 | 5.4-6 | 7-9 | |
Stainless Steel | 5 | 0.6-0.8 | 0.8-1.2 | 1.5-2 | 2.8-3.5 | 4-5.5 |
(N2) | 6 | 0.6-0.8 | 1-1.3 | 1.8-2.6 | 2.5-4 | |
8 | 0.6-0.8 | 1.0-1.3 | 1.8-2.5 | |||
10 | 0.6-0.8 | 1.0-1.6 | ||||
12 | 0.5-0.7 | 0.8-1.2 | ||||
16 | 0.25-0.35 |
Fiber Laser Cutting Thickness and Speed Parameters (IPG/Stainless Steel/6000W-12000W)
6000W | 8000W | 10000W | 12000W | ||
Thickness | Speed | Speed | Speed | Speed | |
Material | (mm) | (m/min) | (m/min) | (m/min) | (m/min) |
1 | 60-80 | 60-80 | 60-80 | 70-80 | |
2 | 30-35 | 36-40 | 39-42 | 42-50 | |
3 | 19-21 | 21-24 | 25-30 | 33-40 | |
4 | 12-15 | 15-17 | 20-22 | 25-28 | |
5 | 8.5-10 | 10-12.5 | 14-16 | 17-20 | |
6 | 5.0-5.8 | 7.5-8.5 | 11-13 | 13-16 | |
8 | 2.8-3.5 | 4.8-5.8 | 7.8-8.8 | 8-10 | |
Stainless Steel | 10 | 1.8-2.5 | 3.2-3.8 | 5.6-7 | 6-8 |
(N2) | 12 | 1.2-1.5 | 2.2-2.9 | 3.5-3.9 | 4.5-5.4 |
16 | 1.0-1.2 | 1.5-2.0 | 1.8-2.6 | 2.2-2.5 | |
20 | 0.6-0.8 | 0.95-1.1 | 1.5-1.9 | 1.4-6 | |
22 | 0.3-0.4 | 0.7-0.85 | 1.1-1.4 | 0.9-4 | |
25 | 0.15-0.2 | 0.4-0.5 | 0.45-0.65 | 0.7-1 | |
30 | 0.3-0.4 | 0.4-0.5 | 0.3-0.5 | ||
35 | 0.25-0.35 | ||||
40 | 0.2-0.25 |
Then, we compare the parameters of the laser cutting machine when cutting different types of materials.
Taking carbon steel as an example, 1000W laser cutting machine cuts carbon steel with a thickness of 4m, and the maximum cutting speed is 2.4m/min.
10000 laser cutting machine cuts stainless steel with a thickness of 4m, and the maximum cutting speed is 1.3m/min.
Fiber Laser Cutting Thickness and Speed Parameters (IPG/Aluminum/1000W-4000W)
1000W | 1500W | 2000W | 3000W | 4000W | ||
Thickness | Speed | Speed | Speed | Speed | Speed | |
Material | (mm) | (m/min) | (m/min) | (m/min) | (m/min) | (m/min) |
1 | 10-13 | 14-18 | 20-28 | 30-40 | 40-55 | |
2 | 2.8-3.5 | 5.0-6.0 | 7-10 | 15-20 | 20-25 | |
3 | 2.0-2.6 | 4.5-6 | 8-10 | 13-15 | ||
4 | 1.4-1.6 | 2.5-3 | 5-6.5 | 7-9 | ||
Aluminum | 5 | 1.3-1.6 | 2.8-3.5 | 5-7 | ||
(N2) | 6 | 0.6-1 | 2-2.5 | 3-3.5 | ||
8 | 0.2-0.3 | 0.8-1.3 | 1.3-1.8 | |||
10 | 0.5-0.65 | 0.8-1 | ||||
12 | 0.3-0.45 | 0.6-0.8 | ||||
14 | 0.25-0.4 |
Fiber Laser Cutting Thickness and Speed Parameters (IPG/Aluminum/6000W-12000W)
6000W | 8000W | 10000W | 12000W | ||
Thickness | Speed | Speed | Speed | Speed | |
Material | (mm) | (m/min) | (m/min) | (m/min) | (m/min) |
1 | 60-80 | 60-80 | 60-80 | 55-60 | |
2 | 28-35 | 38-43 | 39-42 | 35-40 | |
3 | 18-22 | 24-26 | 25-30 | 25-30 | |
4 | 10-14 | 15-17 | 20-22 | 20-25 | |
5 | 8-10 | 10-12 | 14-16 | 13-15 | |
6 | 4.5-6 | 6.7-7.5 | 10-13 | 10-12.0 | |
Aluminum | 8 | 2.0-2.8 | 3.2-4 | 7.8-8.8 | 5-6.0 |
(N2) | 10 | 1.2-1.5 | 2.6-2.8 | 5.2-7 | 3.4-4 |
12 | 0.7-0.95 | 1.7-2.0 | 3.5-3.9 | 2-2.8 | |
14 | 1.1-1.3 | 1.8-2.6 | 1.3-1.7 | ||
16 | 0.5-0.7 | 0.8-1.1 | 1.5-1.9 | 1.2-1.5 | |
20 | 0.3-0.35 | 0.65-0.8 | 1.1-1.4 | 0.8-1 | |
25 | 0.2-0.25 | 0.5-0.6 | 0.45-0.65 | 0.55-0.75 | |
30 | 0.4-0.5 | 0.4-0.5 | 0.3-0.45 | ||
35 | 0.25-0.35 | ||||
40 | 0.2-0.3 |
Fiber Laser Cutting Thickness and Speed Parameters (IPG/Brass/1000W-4000W)
1000W | 1500W | 2000W | 3000W | 4000W | ||
Thickness | Speed | Speed | Speed | Speed | Speed | |
Material | (mm) | (m/min) | (m/min) | (m/min) | (m/min) | (m/min) |
1 | 15-18 | 22-30 | 26-40 | |||
2 | 4.5-5.5 | 10-14 | 15-20 | |||
3 | 3.2-3.8 | 5-7 | 8-12 | |||
Brass | 4 | 1.5-1.8 | 3-4 | 5-6.5 | ||
(N2) | 5 | 0.6-1 | 2-2.5 | 3-4 | ||
6 | 1.3-1.5 | 2.5-3 | ||||
8 | 0.5-0.8 | 1-1.5 | ||||
10 | 0.6-0.8 |
Fiber Laser Cutting Thickness and Speed Parameters (IPG/Brass/6000W-12000W)
6000W | 8000W | 10000W | 12000W | ||
Thickness | Speed | Speed | Speed | Speed | |
Material | (mm) | (m/min) | (m/min) | (m/min) | (m/min) |
1 | 40-50 | 50-60 | 50-60 | 60-70 | |
2 | 21-24 | 28-33 | 34-38 | 35-40 | |
3 | 14-16 | 16-18 | 20-23 | 28-32 | |
4 | 10-11 | 11-13 | 14-17 | 18-24 | |
5 | 7.0-8.0 | 8.5-9.2 | 10-13 | 13-16 | |
Brass | 6 | 4.0-5.5 | 6.0-7.0 | 8.0-9.0 | 9-11 |
(N2) | 8 | 2.2-3.0 | 4.0-5.0 | 6.0-7.0 | 6-8 |
10 | 1.3-1.6 | 2.2-2.8 | 3.0-3.8 | 4.5-5.5 | |
12 | 0.7-0.9 | 1.2-1.5 | 1.7-2.2 | 3.1-3.6 | |
15 | 0.5-0.6 | 0.7-0.9 | 1.4-1.8 | ||
18 | 1.2-1.5 | ||||
20 | 1-1.3 |
Factors to be considered in selecting a laser cutting machine
Power of laser cutting machine
If you only need to cut thin plates, a low-power laser cutting machine below 1000W is more suitable.
If your materials have both thick and thin and need mass production, it is recommended to choose a medium and high-power laser cutting machine.
In this way, both thick and thin plates can be processed, as long as the parameters are properly adjusted.
Material type and plate thickness
Laser cutting machine is widely used in sheet metal processing, automobile, construction and other fields.
Laser cutting machines can cut different kinds of materials, such as wood, acrylic, plastic and more.
But most laser cutting machines are used for metal cutting, such as carbon steel, stainless steel, brass, aluminum, etc.
The cutting speed and effect vary from different materials and thicknesses.
When cutting high anti-corrosion materials, such as aluminum and copper, the processing time should not be too long.
Auxiliary gas, such as oxygen, is required when cutting iron plates.
The smoothness of the cutting edge
The laser cutting edge needs to be flat, smooth, and free of burrs and stripes.
Cutting speed and the auxiliary gas affect the effect of the cutting edge.
In general, the most commonly used auxiliary gases are nitrogen and oxygen.
Nitrogen is an inert gas that does not cause discoloration or oxidation of metals.
Using nitrogen to cut the metal plates will obtain a clean and flat cutting edge.
Oxygen is suitable for cutting low carbon steel because of its low pressure and high-speed characteristics.
Air is suitable for cutting thin metal plates, such as aluminum.
Laser cutting machine components
The most important component of a laser cutting machine is the fiber laser source.
A high-quality fiber laser source has high efficiency, long service life, and low maintenance cost.
At present, the most widely used fiber laser source brands are IPG and Raycus.
Other components, such as laser cutting head, servo motor, water chiller, air cutting system, control system, stabilizer, etc., also need to be carefully selected.